2019年11月,陈永胜团队在《自然—电子学》发表文章,介绍了团队制备出同时具有高导电、高透光且低表面粗糙度的银纳米线柔性透明电极,将其用于构筑柔性有机太阳能电池,与使用商业氧化铟锡玻璃电极的器件性能相当
沙特阿拉伯吉达大学(university of jeddah)物理学助理教授rabab bahabry说,以前的太阳能电池设计已经制造出微小的微型球形电池,有时在平面上用纳米线或量子点电池制造,以帮助更好地收集直接和散射的阳光
通常,太阳能电池设计是在平坦的表面上制造微小的球形电池(有时由纳米线或量子点电池制成),以帮助更好地收集直射和散射的阳光。
研究人员将这种新设备称为“空气发电机”,其最主要的构件是由微生物地杆菌生产的导电蛋白纳米线构成的厚度只有7微米的纳米薄膜。当暴露于空气中时,薄膜会吸收其中的水分,形成一个可自我维持的水分梯度。
陈永胜团队利用高分子电解质,一步法制备了具有“类网格”结构的银纳米线柔性透明电极。该柔性透明电极实现了优异的性能,表面粗糙度低,且具有优良的机械性能和热稳定性以及制备方法简单、绿色。...南开大学化学学院陈永胜教授团队近日成功制备同时具有高导电、高透光且低表面粗糙度的银纳米线柔性透明电极,将其用于构筑柔性有机太阳能电池,光电转化效率刷新了文献报道的柔性有机/高分子太阳能电池光电转化效率的最高纪录
值得注意的是,在纳米结构材料的选择上,纳米线、纳米孔、纳米锥都具有优越的宽角度减反性能,但这里为什么选择纳米金字塔结构呢?
对于1100纳米波长以上的太阳辐射光线,科研团队主要采用最新研制的基于纳米结晶、纳米线和非晶体合金组合的热电转换材料,保持500-700开氏温度范围内的最佳性能。
万元可再生能源发展专项资金河北沽源县上报12项光伏扶贫项目新兴市场太阳能项目收益率高出欧洲两倍多2016年第一季度撒哈拉以南非洲地区清洁能源市场展望全球最大太阳能飞机从夏威夷重启环球飞行瑞典新兴公司突破纳米线技术
纳米线在太阳能发电上展现出了前景可期的特性,但由于高深宽比及材料特性使得纳米线非常难以校准。...砷化镓(gaas)纳米线已经走到了产业的第一线,对提升远超过目前水平的太阳能模组效率带来很大的希望。通过将纳米线在薄膜内进行校准,我们已经迈出朝商业规模化制造太阳能纳米线薄膜的最大的一步。
针对力学柔性问题,熊宇杰课题组对商用硅片进行薄化和纳米线刻蚀处理,进而结合银纳米片的等离激元热电子注入效应,制造出了具有力学柔性的近红外太阳能电池。...该工作实现了自下而上和自上而下两种纳米技术的有效结合,为实现广谱光吸收的复合结构界面设计提供了精准制造基础,并发展了一种简便有效的近红外柔性太阳能电池的制造方法。
在单纳米线光电转换器件方面,李孝峰课题组成功实现了单纳米线太阳电池的二维和三维光电设计,提出多种可实现硅基、砷化镓异质结以及复杂微纳结构单纳米线太阳电池的光电性能优化设计方案。
设计制备出由ito纳米线芯层与cu2s纳米晶壳层组装而成的ito@cu2s纳米线阵列,使用这种具有三维导电网络结构的材料制备的量子点敏化太阳能电池表现出优于传统材料的优异性能(nanolett.,2014,14,365
对比铋纳米带的二维拓扑表面态结果,在柱形纳米线中的超导电性与曲面应力诱导纳米线表面态的电子结构调制有关。...该研究利用了强磁场科学中心多功能物性测试系统(ppms)和sem/fib双束纳米加工系统。(左)铋纳米线的高分辨电镜照片;(右)不同直径bi纳米线电阻随温度变化曲线
成功的关键之处在于由银纳米线制成的顶级金属接触材料,其使得大部分光子通往下面的光吸收层。mcgehee和其他人非常有信心能做得更好。
其突破性在于创新地在钙钛层上使用了银纳米线电极而不破坏脆弱的钙钛活性层。这一技术可将硅电池的效率从11.4%提升至17%。钙钛本身就具12.7%的效率。
solvoltaics公司此前曾预计,将在2013年底实现使用了砷化镓纳米线的功能性太阳能电池的生产。但至今该公司的官方网站上也为对此做出任何公告。...solvoltaics推出的砷化镓纳米材料据称可实现太阳能电池的低成本油墨印刷工艺,该产品的新品发布介绍吸引了众多读者的关注。
lsmc的工作主要在纳米线的几何结构方面。这些针状的晶体(纳米线)直径在20到100纳米之间,长度在几个微米的量级。...例如:砷化镓纳米线与其它的纳米尺度的材料相结合,在横向和纵向两个方向上进行。其中一个例子是使用砷化铟量子点植于纳米线上产生类似催化的作用,从而增进光线的吸收效率。
可扩展到几米长硅基光纤太阳能电池首次被开发出来,这项研究向我们提供了一种可能性:我们将可以通过编织硅纳米线纤维来获得柔性的、可弯曲的或者扭曲的太阳能织物电池。
族半导体纳米线技术制作高性能光伏器件的研究上获得重要进展。...徐洪起教授研究组近年来在开发研究新型半导体纳米线光伏器件的原理和技术方面做了许多探索工作。
位于硅基片之上的纳米线吸收太阳射线。纳米线极有可能成为未来太阳能电池的发展主流。...他们的研究发现,纳米线能够将太阳光自然聚集到晶体中一个非常小的区域,聚光能力是普通光照强度的15倍。由于纳米线晶体的直径小于入射太阳光的波长,可以引起纳米线晶体内部以及周围光强的共振。
研究人员在基材上制造了毫米尺寸的纳米线阵列,而这些纳米线的直径仅为180纳米,纳米线覆盖面积仅占基材的12%,但其光电流却占总发电量的71%。
美国麻省理工学院(mit)研究人员采用了聚合物涂层来改变其性能,在表面覆盖一层氧化锌纳米线,然后覆盖一层光感材料(铅硫化物量子点),研发出一种基于涂覆一层纳米线的石墨烯薄片的新型太阳能电池。
近日,美国麻省理工学院的研究人员研制出一种在柔性石墨烯片上涂覆纳米线的新方法。这种方法可以生产出低成本、透明以及柔韧性佳的太阳能电池,能够在窗户、屋顶以及其他物体的表面使用。...因此格瑞特克及其团队使用了一系列聚合物涂层来改变石墨烯的属性,使其能够粘合氧化锌纳米线层,然后再覆盖上响应光波的硫化物量子点或者一种被称为p3ht的材料聚合物。
同轴、多壁tio2纳米管阵列制备及微观结构基于课题组在氧化物纳米结构研究的多年积累,采用超长zno纳米线阵列为模板,结合可精确调控纳米微结构的连续离子层吸附与反应(silar)技术,成功实现了tio2纳米管阵列在
该企业将向电池制造商供应硅纳米线硅片并开发其制造工艺。基于此,该企业将获得100万美元资助。...通过将硅纳米线(silicon nanowire)电池融入标准过程,总部驻马萨诸塞州沃本市的bandgap engineering可以令光伏电池转换效率提升约10%。