聚光光伏渐热第三代CPV(聚光太阳能)发电方式正逐渐成为太阳能领域的焦点。与前两代电池相比,CPV采用多结的III—V族化合物电池,具有大光谱吸收、高转换效率等优点。HCPV就是高聚光太阳能,高聚光太阳能(HCPV)与聚光(CPV)太阳能技术是通过聚光的方式把一定面积上的太阳光通过聚光系统会聚在一个狭小的区域(焦斑),太阳能电池仅需焦斑面积的大小即可,从而大幅减少太阳能电池的用量。聚光光伏技术的研究始于上世纪70年代的石油危机,虽然聚光光伏技术的研发已经有30多年历史,但聚光光伏电站的商业化运营目前在全球范围内仍处于起步阶段,最根本的原因是

首页 > 市场 > 正文

聚光光伏优势何在

2012-07-04 10:23 来源:OFweek太阳能光伏网 

聚光光伏渐热

第三代CPV(聚光太阳能)发电方式正逐渐成为太阳能领域的焦点。与前两代电池相比,CPV采用多结的III—V族化合物电池,具有大光谱吸收、高转换效率等优点。HCPV就是高聚光太阳能,高聚光太阳能(HCPV)与聚光(CPV)太阳能技术是通过聚光的方式把一定面积上的太阳光通过聚光系统会聚在一个狭小的区域(焦斑),太阳能电池仅需焦斑面积的大小即可,从而大幅减少太阳能电池的用量。

聚光光伏技术的研究始于上世纪70年代的石油危机,虽然聚光光伏技术的研发已经有30多年历史,但聚光光伏电站的商业化运营目前在全球范围内仍处于起步阶段,最根本的原因是成本太高。随着技术的日趋进步,近几年取得较大的发展,目前全球已经开展了很多研究项目,并建成了许多示范工程。

聚光光伏的诸多优势使其备受关注,但其的生产和应用却不及晶硅电池和薄膜电池,究其原因是其应用方面存在很多特殊的地方。

专家指出,聚光光伏目前适合在中国西北地区应用,因为那里阳光比较充足,地域辽阔,适合做大型的聚光光伏发电站,而不太适合在城市做民用。因为聚光光伏的特点是在阳光充足的地方,其效率要比多晶硅好很多,现在城市的空气洁净度很差,对聚光光伏的应用效率会有制约。

优势源于技术

聚光光伏是利用光学系统,将太阳能通过聚光的方式会聚在一个狭小的区域(焦斑),再利用光伏效应把光能转化为电能的发电技术,太阳能电池仅需焦斑面积的大小即可,从而大幅减少了太阳能电池的用量,同样条件下,倍率越高,所需太阳能电池面积越小。

有别与传统硅晶型以及薄膜型,它主要由聚光组件、太阳跟踪器、系统支架等部件构成,类似于用放大镜点着火柴,看似简单但实际上,聚光光伏却涉及力、热、光、电、机械、电子、自动化控制等综合性技术,需要解决太阳跟踪、光效、散热等一系列问题。

聚光光伏的技术最显著的优点在于它的高光电转换效率,硅电池的理论转换效率大概为23%,单结的砷化镓电池理论转换效率可达27%,CPV采用的多结的III—V族电池对光谱进行了更全面的吸收,其理论转换率可超过50%。即使考虑到聚光和追踪所产生的误差损失,目前的CPV系统转换效率可达25%,高于目前市售晶硅电池17%左右的转换效率。同时,砷化镓系电池的高温衰减性能强于硅系电池,更适合应用于日照强烈的荒漠地区。以年度发电量而言,在相同的条件下,结合双轴追日技术的运用,约是传统硅晶型的1.2~1.4倍,此点是聚光光伏技术的竞争优势,我国砷化镓聚光电池的转换效率已达到35%~39%,远远高于晶硅电池16%~19%和薄膜电池10%的转换率。

同时,CPV系统的生产过程更加节能环保。聚光倍数越大,所需的光伏电池面积越小,对高达几百倍的HCPV系统来说,硬币大小的转换电池就可转换碗口面积的光能。在节省半导体材料用量的同时,降低了太阳能发电系统的生产成本和能耗,使CPV具有更短的能量回收期。

聚光光伏在节省半导体材料用量的同时,还降低了太阳能发电的成本和能耗,具有更短的能量回收期。此外,聚光光伏还具有吸收光谱范围广、衰减慢、耐温性好、有效发电时间长等显著优势。

据专家介绍,目前我国的多晶硅电池投资回收期要在5~6年,国外要2~3年,薄膜电池在1年左右能回收,而聚光光伏大概只需半年时间。

而第三代高聚光型(HCPV)太阳能发电模组和发电系统的是近年来国际太阳能光伏发电技术的新热点,同晶硅技术和薄膜技术相比,HCPV在100KW以上发电系统中具有明显的优势,如果综合考虑年发电成本和碳痕迹等因素,则HCPV拥有绝对优势。目前第三代HCPV(高聚光)已将聚光倍数提高至500倍。

相比晶硅电池和薄膜电池产业来说,聚光光伏已成为一个极具诱惑力的市场。目前,投身于此行业的国内外公司已经越来越多,其中就包括Boeing、Amonix、PracticalInstruments、夏普以及国内广东新曜、三安光电、昊阳新能源、安徽应天新能源、汉龙集团、上海聚恒,等等。

关键是降低成本

尽管聚光光伏具有占地面积小、发电效率高、节省材料、减少污染等优点,但其最大缺点就是成本太高,其成本大大高于多晶硅电池。

太阳能行业虽然发展迅速,但还属于政府补贴的一个高成本行业,政府补贴是有限的、不可延续的,而聚光光伏的产业发展也在很大程度上会受到这方面因素的影响。

只有把成本降到一定程度,或者有突破性的技术出来,聚光光伏的市场才能打开,以聚光光伏的行业特点看,应用规模越大,成本越低。这也在技术研发和应用方面对聚光光伏提出要求,而自主研发能力不足恰恰是制约我国聚光光伏发展的问题。

不同于多晶硅电池和薄膜电池,聚光光伏结合了光学、控制、机械等多种学科技术,其研发投入相比前两者要更高一些。目前,我国大多数公司不愿意从基础做起,而是把国外技术和设备直接搬过来,更多地倾向于“拿来主义”,真正自主开发系统集成的公司非常少。

但无论如何,未来随着技术的更加成熟以及生产规模的进一步扩大,聚光光伏对于我国光伏产业来说势必带来强大的动力,强有力的竞争或许能带动我国光伏产业格局的调整,使得我国光伏产业更加的健全。

高倍聚光的Ⅲ-Ⅴ太阳电池发电成本分析

决定CPV 发电成本的主要因素是:(1)产量规模;(2)聚光倍数;(3)电池效率

目前和今后,发展类似LEDs 制造方法制造多结化合物太阳电池,可以使得多结化合物太阳电池的成本大大降低,具有竞争力的CPV 市场需要使用1000 倍或更高倍聚光的Ⅲ-Ⅴ太阳电池,因为市场上Si 太阳电池已经做到几百倍太阳聚光,虽然效率只有25%。用更高倍聚光来抵消Ⅲ-Ⅴ太阳电池生产成本。

另一个建议使用1000 倍聚光的原因来源于CPV 实际产业化实验成本分析,以西班牙NFLATCOM 项目为例,2000 年完成的第一阶段实验,接近与完全聚光PV 模块原型制造过程。使用RXI 光学聚光器1000 倍聚光,使用GaAs 单结电池(25%);使用高效率高倍聚光系统实现了商业光伏系统安装(10MWp)成本为2.8 欧元/Wp,另外,如果加上其他不过预期的成本估算为4.8 欧元/Wp,由此可见,需要使用1000 倍聚光来抵消Ⅲ-Ⅴ太阳电池生产成本。

CPV 在产业化实验的第二阶段,取得明显进展,实现了商业光伏系统成本为2.5 欧元/Wp,据估算,工作在1000 倍聚光,效率为30%的多结化合物太阳电池,光伏系统成本为2.5 欧元/Wp,而对于工作在400 倍聚光,效率为38%的多结化合物太阳电池,光伏系统成本为3.0欧元/Wp,对于工作在250 倍聚光,效率为40%的多结化合物太阳电池,光伏系统成本为3.8欧元/Wp,对于工作在1000 倍聚光,效率为26%的多结化合物太阳电池,光伏系统成本为2.8欧元/Wp,下图给出不同聚光条件和不同电池效率的光伏发电成本。


特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。
展开全文
打开北极星学社APP,阅读体验更佳
2
收藏
投稿

打开北极星学社APP查看更多相关报道

今日
本周
本月
新闻排行榜

打开北极星学社APP,阅读体验更佳